Teach education

Reflections of an IB science teacher

How we Learn – Reflections, part 1

1 Comment

I am now 25% the way through “How we Learn” by Benedict Carey and I have to say that so far, I am incredibly impressed by Carey’s pace, style and the thoroughness in his research. He manages to convey the science and the theory with the right level of scepticism as to hint at it’s use without making false promises.

So, what have I learned about how we learn and how could this apply to the classroom?

1. There are two key factors in memory: Retrieval and Storage

Our capacity for storage of memories is incredible high, and in fact very few memories are not thrown into our memories storage bank. But that does not mean to say that they are stored alphabetically on some figurative bookshelf in the brain. No, memories are more like the contents of a teenagers bedroom – scattered about in a loose order. Memories of a texture linked to a particular colour, or memories of an old man’s face linked to the scent of his aftershave. We can increase storage simply by increasing the number of memories we have connected to a piece of information (More on this later).

Retrieval however, is fickle. It is gained or lost fairly quickly depending simply on how frequently the memory in question is required. Further to this, it’s capacity is limited. We can only call up a limited number of facts at any one time.However, retrieval strength can be built up quickly by simply making sure that we have to work hard to retrieve a memory. There is an interesting connection between this and a major point from the book “Bounce” by Matthew Sayed, where an example from psychologist S. W. Tyler is used to show the correlation between mental effort and memory retrieval.

2. Storage relies on connections

In point 1 we mentioned that we can increase storage by increasing the number of memories that we connected to a piece of information. This is the big picture of the well known adage that we should study in a similar environment that we expect to be tested in. The theory on this is that knew memories hand on other memories that were formed at the time – for example, studying algebra for a maths test with Jazz music playing in the background and then taking the test with the same Jazz music in the background will produce better results because notes or phrases in the Jazz music can create cues for the knew things we learnt within that revision. The real kicker here is that silence then, proves to be quite a useless study environment because it is rather void of cues or memories on which to hang this new information.

So, to form knew memories we hinge them on other memories and experiences created at the time. Therefore, to maximise memory retention we should also maximise the variety of the environments and the contexts in which we learn it.

This is one of the findings in the science of learning that I feel that we most fail at making use of. Schools do a very good job at compartmentalising subjects. “Science is science and it is taught in the science block and your science teacher is Mr Copeland and you will sit in this seat and work with this student and you will listen in silence.

Perhaps we should listen to what research is telling us and try to mix things up a little more at school. Why not borrow the P.E. hall, or the design block for science classes and create lessons that show connections between science and those subjects? Could schools have teachers rotating concepts rather than classes, meaning greater variation in the number of science teachers a student has across a year? How often are you mixing your seating plans so that students can connect different concepts to different places and partners? Is music in the classroom necessarily a bad thing if a student remembers a song and vastly increases the volume of content that comes to mind?

3. Less time more sittings

Another idea covered by the book is the idea of “spacing out” learning. Some pretty rigorous research has determined that shorter length but higher volume sessions are more effective than longer length and lower volume sessions that have the same total length of study time. For example, three 20 minute sessions spaced out over time are more effective than a single 60 minute session.

Now, quite regularly I will plan my lessons in lesson parts and activities, with previous parts or activities usually building up towards the later parts and activities. But this finding makes me wonder… What if each lesson part was actually on a different topic, but topics were repeated throughout the term? For example, in grade 6 we teach Energy, the Periodic Table and Cells. The obvious approach would be to teach “Energy” for about a term, assess, and then move on to the “Periodic Table”, and assess before finally moving onto “Cells”.

But now, what if we instead covered all three. In lower volume, but higher frequency. What if we had a lesson where there was a 20 minute activity on Energy, followed by a 20 minute activity on the Periodic Table and finally a 20 minute activity on Cells. And then next lesson we spent 30 minutes on energy and 30 minutes on the Periodic Table. And then we had a 120 minute project on Cells, but we did that in 30 minute bursts whilst alternating between the Periodic Table and Energy for the other 30 minutes…

Students would have to keep retrieving what they learnt on Energy, or the Periodic Table, or Cells. High retrieval. Even if teachers change or seating plans change, they are still working on all three disciplines. High storage.

“But student’s will keep forgetting what they learn’t”…

4. Forget to Learn

One of the biggest revelations for me in this book was the concept of “Forget to Learn”. You see, new information is “Forgotten” incredibly easily. And so it should be – “We never needed this before, we should we need it again?” our brains seem to think.  But then we call upon the information again and it is difficult, and this mental effort makes our brains think again. “Wow, I needed that information again and I really didn’t enjoy straining to remember it. I’d better make the retrieval a little higher for next time”.

In short this holds two lessons for teaching. Firstly, your students will forget stuff, and they should. Secondly, it should be a struggle to recall. And this second point creates an important addition to our new learning model. When we re-introduce topics to students we are doing them a disservice by handing them a summary of everything they should remember. We are doing then a disservice by showing them a revision video or letting them Google the answers too early on. We are essentially saying to their brains “Don’t worry about retrieval, here it all is again”.

So, perhaps in our model, we could begin each activity with a short quiz on what they should already know. No books. No Google. Just Brain.

Anyway, these are the main points I remember from the book. I’ve just challenged my own retrieval, so hopefully I’ll remember more when I’m in conversation with someone about the key points of the book. Furthermore, I’m in a coffee shop at the moment so for the occasional times I’ve had to dive into the book to remember a concept, hopefully I’ve extend my storage cues. There were actually a few things I’d forgotten, too. I must be learning!

To buy “How we Learn” by Benedict Carey, please follow the link below;

How We Learn: The Surprising Truth About When, Where and Why It Happens

Advertisements

Author: mrcopeland

Whilst I believe that there is a common core of knowledge that is necessary for academic conjecture to take place, I still think that there is plenty of room for progressivism in education. My pedagogical approach centres on guiding and motivating students to become independent academics and global citizens so that they have the tools they need to both succeed within, and shape for the better, an uncertain future. I believe that we are in a golden age of support in education, with a wealth of educational professionals willing to collaborate across the world and countless technologies for education being provided all the time we are in a position to achieve a new standard of education. By blending our learning structures and using tools for AFL to support and guide scaffoldings for inquiry, we are for the first time in a position to offer a classroom that is truly differentiated and flexible to every student’s needs. This flexibility gives space for students to express themselves and use creativity in their approaches, to develop important social and professional skill sets and to be guided by inspiration and inquiry. This subsequently allows students to take ownership of not just their education but their position in the world, allowing them to develop into true global citizens.

One thought on “How we Learn – Reflections, part 1

  1. Persuading my brain to learn what I want it to learn seems to be a key point.
    Thanks for sharing.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s